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Note 

Reliable Evaluation of Gaussian Integrals 

1. INTR~Du~I~N 

A number of recent articles [2, 6, 71 appeal to the rapid evaluation of the Gaussian 
integrals 

F,(T) = Jo1 e- Tu2u2n du (1) 

with T positive and m = 0, 1, 2,... in order to effect the evaluation of quantum- 
mechanical integrals. 

In this note we shall discuss several aspects of the evaluation of the generalized 
Gaussian integrals 

s 1 
a(s, x) = es e-xtts-l dt 

, (2) 0 

where Re(s) > 0. The recursive relation OL(S, x) = (xa(s + 1, x) + 1)/s enables one 
to continue the function to all complex numbers s save for the negative integers and 
zero. The restriction of this function to real parameters wiil be the concern of this note. 
The two functions that were introduced are related through the formula F,,,(T) = 
+e-=a(rn + 4, T). With respect to the incomplete gamma function y(s, x) in [l] one 
has LY(S, x) = ezx-S& x). 

Incalmost every occurrence, the function ol(s, x) manifests,itself for integral or half- 
integral parameters, but there occur notable exceptions. In [5] one encounters the 
need to evaluate integrals of the form 

Z(p, x) = Jocu-1)‘e e-V-“(1 + t)l+u dt 

for 1 < j.k < 2. The expansion 

I(/.&, x) = f(p, x) (a(2 y- p, !&.L - I)) + (’ 1”) (HP - 1)) 4 - P9 4-G - 1)) 

+ (’ ; “) <a+ - l)Yo1(4 - P? HP - 1)) + *+ (4) 

where f(p, x) = (+(Z.L - 1)2-ue- z(u-1)/2, enables one to evaluate I&., x) and effects a 
desired analytic continuation to the region 1 < ~1 < 3 save for Z.L = 2. 
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With respect to the formulas of Boys [2] the introduction of CX(S, X) does not, in 
general, increase the complexity of evaluation of quantum-mechanical integrals, for 
the added exponential can be absorbed. Thus, for example, the electron rep&in 
integral [2, 31 may be written in the form 

[aAbB 1 r;,’ I cCdD] = #’ 
4w9 T) 

(a + b)(c + d)(a + b + c + d)1/2 

ew ( +-Die-T), 

where T = (a + b)(c + d) 1 P - Q /“/(a + b + c + d), P = (aA + bB)/(a + b), and 
Q = (CC + dD)/(c + d). A similar change in formulas can be made in [6]. 

2. COMPIJTA~ON THROUGH BACKWARDS RJKURSION 

The recursive relation ol(s, X) = (XC@ + 1, X) + 1)/s motivates the introduction of 
sequences of aEne linear operators S, , S,, S, ,. . . through S,(w) = (XW + l)/(s f n - 1). 
One has Si(ol(s + n, x)) = OI(S + n - 1, x) and S,S, *** S,(OL(S + n, x)) = or(s, x). 
It is understood that there is a dependence of the operators on a fixed parameter s 
and a fixed argument X. If S = SJ, *a. S, , then one has 

S(0) = ; + 
i&J+ *'*+ 

p-1 

s(s + 1) *** (s + II - 1) 

which is a truncation of the infinite series, [l, 71 

a(s, x) = ; + --E-- x2 
s(s + 1) + s(s+ l)(s+2) + -*I* 

The operator notation has both algorithmic and analytic utility. Let T(o) = a0 + b 
be an a&e linear function. When T(w) is not zero, then the formula 

W4 + 4) = Tb)U + b-(+) (7) 

defines 6,(w) = (T(o(1 + E)) - T(o))/T( w E, ) a quantity which shall be termed the 
stability factor of T at w. One has that O(U) = e,(w) = oT’(o)/T(o). This formula 
extends the definition of the stability factor to differentiable functions. If I 0(w)] < 1, 
then Twill be said to be error correcting at w. If S and Tare two differentiable functions 
such that T(o) and ST(w) are different from zero, then one has the chain ruZe O&J) = 
w-4 w4. 

THEOREM 2.1. If S = S,S, *a* S,, , then the stability factor of S at o = (Y(S + n, x) 
is given by 

e+) = Xn m 
r(s + n) a(s + n, x) a(s, X)-l. (8) 
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The stability factor satisfies the estimate 

0 Q 13,(w) < min{P-m~(m)/~(n) I 0 < m < n}. (9) 

The stability factor is related to relative truncation error through the relation 

S(0) = a(s, x)(1 - e,(o)). (10) 

Estimate (9) is in actual fact a relative truncation error estimate and is similar to 
the absolute error estimate in [8]. 

A useful estimate for ar(s, X) is 

1 /s < “(S, X) < l/(s - X), (11) 

which is valid whenever s > x > 0. 
Let n(s, X) denote the smallest index so that the truncation (5) approximates 

(~(8, X) to eleven decimal digits. This index function may be computed from (8) 
or (9). A tabulation of n(s, x) is made in Table I. 

Methoa’s of evaluation. Several methods exist for evaluating the truncated series 
and the backwards iterates. There is no mention in the literature of the second 
method. 

I. Through the help of the formula s/x = (s - 1)/x + l/x it is possible to make 
a forward evaluation of (5) in [n(x) + l] operations, where n(x) denotes the truncation 
index. 

II. In backwards recursion one may evaluate the recursive transformations in 
pairs through exploitation of additive relation in a manner which requires only one 
division. As a result S(O), corresponding to (5), may be evaluated in [&z(x) + 5)] 
operations. 

In backwards evaluation it is expedient to approximate the starting index through 
linearizations. For example, n(x) = 15 + [4(x - I)] (1 < x < 5) and n(x) = 30 + 
[2(x - 5)] (5 < x < 10) approximate well the starting indices n(1/2, x) in Table I. 

TABLE I 

X NW, 4 43312,x) X 4112, -4 n(W, xl 

1 15 8 6 31 16 

2 19 10 7 34 18 

3 23 12 8 36 20 

4 26 13 9 38 21 

5 29 15 10 40 23 
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EXAMPLE 2.2. Backwards recursion is particularly suitable to the evaluation of 
series (4). One obtains from (3) the operator 

( s, ... s, + (’ f “) (i&L - l))S, ..* s, + ... +i l; “) (HP - 1))” q. (12) 

One has T(o1(3 + n - p, &x(p - I) = I&, x) + O((p - 1)/2)“). 

3. COMPUTATION THROUGH TAYLOR EXPANSION 

The process of computing function values through Taylor expansions has been 
quite useful and may be the most rapid method for generating the functions under 
consideration [4]. However, the computation of cll(s, x + h) from ol(s, x) through 
series expansions in which the coefficients are recursiveIy generated allows one to 
adopt an operator point of view [9]. From the numerical perspective the behavior of 
our operator series is somewhat distinct from the behavior of series with exactly 
determined coefficients. 

One has the expansion 

a(s, x + h) = eh(a(s, x) - ha(s + 1, x) + h‘%(s f 2, x)/2! f *a.). (13) 

Let Tl , T, , T3,... be affine linear operators defined by T,(w) = ((s + n - 1)~ - 1)/x. 
One has that T,(a(s + n - 1, x)) = ol(s + n, x) and T,T,-, 1.. T,(a(s, x)) = 
a(s + n, x). If one sets 

T Z,Y = eh(Z - hTl + h2T2Tl! f *mm), (14) 

where h = y - x, then one obtains a continuation operator with the property that 
Tw(4s> 4) = 4s> Y). 

If T = T,,T,-, a.0 T, and S =S,S, .** S, , then T = S-l and one has the formula 
M4& -4) = es(h + n, x))-l, which expresses the fact that T is unstable to the same 
degree that S is stable. Thus (14) is a series of unst able operators. In [9] we established 
an error cancellation principle for a similar series. An analogous computation can be 
made here. For H, = h”T,T,-, *a* T&z! one has the formula 

H&L@ + e)) - H,(w) = c” (,“) WE, (15) 

where c = h/x. Upon summation one obtains 

T,,,(w(l + 6)) - T,,,(w) = (1 + c)-%JE = ( y/x)%r. (16) 

When y > x and s > 0, then the above quantity is small, a fact which may be inter- 
preted to mean that first-order errors propagate in such a manner that their sum is 
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small. It is possible to write formulas which assert that .errors. introduced into the 
recursion process at a later stage also have the cancellation property. 

THEOREM 3.1. The operator series 

T,,, = eh(I - hT, + h2T,T,/2! * ***), 

where h = y - x, converges at every point when 1 h/x 1 < 1. 

THEOREM 3.2. The stability factor 8 = 0(x, y) of T,,, at CX(S, x) is given by the 
formula 

e(x, Y> = e”+, 4 ds, YY(Y/x)-~ 
(17) 

= 
s 

z 
e-tp-l& y 

II 
e-V--l dt. 

0 0 

Let n(x, h) denote the index of truncation for the operator evaluation Tz,2+h(ol(s, x)) = 
or@, x + h) so that at OL(S, x) the operator T3C,z:+h is approximated by 

eh(l + hT, + h2T,Tl/2! + *** + (-h)“-lTn-l *** T,T,/(n - l)!) 

to 11 significant digits [3]. A tabulation is made in Table II. 

(18) 

TABLE II 

X 4x, 1) n(x, l/IO) (s = l/2) d-5 1) n(x, l/10) (s = 33/2) 

2 12-70 6 53-70 7 

5 11 6 14 7 

10 10 5 14 7 

20 7 4 13 7 

30 6 4 12 6 

40 6 4 11 6 

Method of evaluation. It is possible to effect the evaluation of (18) in 3n(x, h) 
operations. One writes T,(w) = ((s + n - l)/x)w + l/x, which allows that the compu- 
tation of T,(w) is one operation, for the coefficient can be updated through the addition 
of l/x. Similarly, h”/n! can be generated from h’+‘/(n - l)! through division by a 
quantity which is updated through addition. 

EXAMPLE 3.3 (A divergent operator series). Let Tl , T2, T3 ,... correspond to 
42 - p, ix(p - 1)). Define 

T = Z + (’ ; “) (:(P - 1) 1 2-1 + (’ ; “) (Mp - IN2 TJ-1 + -a* . (19) 
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One has the perturbation calculation 

= WE (1 + (1 f P)(-+) + (1 ; p)(v)(*) + . ..). 

which allows one to infer that Tconverges only at the ideal point 42 - t.~, J&L - 1)). 
Since the perturbed series diverges quite fast, one cannot expect to evaluate (4) with 
forward recursion, save in an asymptotic manner. 

Caution. While T,,, is error correcting for y > x, one should limit h = y - x 
so that 1 k 1 < 1. This is necessary because (14) is an alternating series in the upward 
direction. 

The error cancellation phenomenon has been tested on actual computers in the 
parameter range 0 < s < 20 with ) c 1 < $. However, the property may fail when s is 
large, x is small, and c is near unity. 
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